AM for EnergyLFAMMoney & FundingRenewable Energy

US DoE puts $2,849,000 towards 3D printing modular wind blades

The funding was awarded to Purdue University and its industry partners, including Thermwood, TPI Composites Inc., Dassault Systèmes, Dimensional Innovations, and Techmer PM

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

The US Department of Energy (DOE) has awarded $2,849,000 to the Composites Manufacturing Simulation Center (CMSC) of Purdue University and its industry partners, including Thermwood, TPI Composites Inc., Dassault Systèmes, Dimensional Innovations, and Techmer PM.

The DOE-funded Purdue program, “Additive Manufacturing of Modular Tools with Integrated Heating for Large-Scale Wind Blade Manufacturing,” is led by Eduardo Barocio, director of the Composites Additive Manufacturing and Simulation (CAMS) Industrial Consortium.

“The primary goal of the program is to develop the foundation for automation in manufacturing of tooling for large-scale wind blades that can accommodate continuous changes in blade geometry and scale,” said Barocio. “This will be accomplished through modular construction, wherein modules are 3D printed with carbon fiber/thermoplastic composites by a technology called extrusion deposition additive manufacturing, which was first developed at the DOE’s Manufacturing Demonstration Facility in the Oak Ridge National Laboratory.”

Specific targets for the program include developing a module design for wind blades equal to or greater in length than 80 meters; reducing the time required to manufacture and assemble wind blade tooling by at least 40% over conventional tool manufacture; enhancing tool performance by at least 15%; effecting weight reductions of by a minimum of 25% over conventional tools; and lowering the manufacturing cost of a wind blade tool by at least 35%.

US DoE puts $2,849,000 towards 3D printing modular wind blades. The funding was awarded to Purdue University and its industry partners.
Eduardo Barocio.

Barocio is the founder and director of the Thermwood LSAM Research Lab at the Indiana Manufacturing Institute in Purdue Research Park. He is also the founding director of the Composites Additive Manufacturing and Simulation Industrial Consortium, whose mission is to shape the future of large-scale additive manufacturing by providing education, simulation tools, characterization, and best practices.

“The proposed program provides the foundation for automated manufacturing technology in wind blade tooling manufacture,” said Barocio. “These same technologies can be applied to manufacturing of all the elements of the wind energy system and, as such, the program provides a pioneering development that can leverage technology within the United States for a major source of clean energy, wind.”

The program will develop and demonstrate seven specific innovations. These include automating the 3D printing of large-scale modules and developing robust joining technology and inline heating elements deposition for conduction heating. Others include 3D printed cooling channels for convective cooling; new composite materials systems for economy and performance; support frame weight reduction; and tool deformation prediction and control, with decision-making by a digital twin for 3D printing design and manufacturing.

Overall, the DOE awarded $30 million for 13 projects across 10 states that will reshape the design, materials, and sustainability of large wind blades for offshore and land-based applications. Large wind blades face significant challenges in design and materials, particularly for offshore applications. The selected projects will tackle these challenges, focusing on sustainability, efficiency, and technological advancements to make wind energy more viable and effective.

Advanced lightweight composite materials have emerged as pivotal in enhancing wind power generation and vehicular applications. The DOE projects were picked for their potential to bolster the manufacturability and robustness of these composite materials, which are essential to the future success of wind energy technologies. The projects focus on three primary challenges: large wind blade additive manufacturing; additive manufacturing of wind turbine components; and advanced manufacturing, materials, and sustainability for large wind blades.

“These projects, alongside the Purdue program, will address the remaining challenges in wind turbine manufacturing and build on previous work in automation, digitalization, wind blade sustainability, and modular blade construction and joining,” said R. Byron Pipes, executive director of the Composites Manufacturing Simulation Center at Purdue. “Successful demonstration of automation in the manufacture of alternate energy systems can enhance their wider use while sustaining the industry in the United States.”

In other DoE funding-related news, GE Research has selected voxeljet as its partner for a $14.9 million award in federal funding for the development and commercialization of the large sand binder jet 3D printer, also referred to as Advanced Casting Cell (ACC), to accelerate the United States’ transition to clean power.

Research
Metal AM Market 2023

444 metal AM companies individually surveyed and studied. Core metal AM market generated over $2.8 billion in 2022. Market expected to grow to over $40 billion by 2032 at 30% CAGR. This new market ...

Edward Wakefield

Edward is a freelance writer and additive manufacturing enthusiast looking to make AM more accessible and understandable.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Save
Accept all Services

Newsletter

Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.