BiofabricationBioprinting

Trestle Biotherapeutics emerges to bioprint implantable kidney tissues

The company licensed technology from Prof. Lewis Lab at Harvard's Wyss Institute

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

A new company has emerged that is targeting the goal of bioprinting kidney tissue (and eventually kidney organs) for implantation. Trestle Biotherapeutics, a private company based in San Diego, has entered into a license agreement with Harvard University. Under the agreement, Trestle will commercialize a suite of stem cell- and 3D biofabrication-based regenerative medicine technologies developed by Professor Jennifer Lewis Lab at Harvard’s Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and Brigham and Women’s Hospital.

The core of the technology being licensed to Trestle was developed by a multi-disciplinary research team in the laboratories of Jennifer Lewis, Sc.D. and Ryuji Morizane, M.D., Ph.D. Lewis, whom we had the honor to meet in person when visiting Harvard in 2017, is a Wyss Core Faculty member, leads the Wyss Institute’s 3D Organ Engineering Initiative, is the Hansjörg Wyss Professor of Biologically Inspired Engineering at Harvard SEAS, and is a Principal Faculty member of the Harvard Stem Cell Institute. Dr. Morizane is a Principal Investigator at Massachusetts General Hospital, an Assistant Professor at Harvard Medical School, an Affiliated Faculty member at Harvard Stem Cell Institute, and a Visiting Scholar at the Wyss Institute. Drs. Lewis and Morizane are both members of Trestle’s scientific advisory board.

Trestle Biotherapeutics emerges to bioprint implantable kidney tissues licensing technology from Prof. Lewis Lab at Harvard's Wyss  Institute Trestle is developing functional kidney tissue to supplement and replace lost renal function in kidney failure patients. Trestle is building these novel tissue therapeutics through the integration of stem cell biology and 3D biofabrication technologies. As of 2021, there are more than 100,000 patients waiting for a kidney transplant and more than 550,000 patients who are dependent on dialysis for survival.

Organovo, also based in California, was one of the first companies to attempt the development of kidney tissue through bioprinting however the technology had proven too immature at the time. A lot has happened since and Jennifer Lewis’ Lab has conducted some of the most advanced research into bioprinted implantable tissues and vascularity. Among other successes, the Lewis Lab created a multi-material, bioprinting platform that enables the fabrication of 3D tissues composed of multiple cell types, engineered extracellular matrices, and vasculature. These vascularized tissues are currently under development for fundamental studies related to drug screening, disease modeling, and tissue repair and regeneration.

“Patients living with kidney failure have had the same two standard-of-care treatment options for more than 60 years. We are really excited to embark on the ambitious mission of changing that and building upon the work of the Lewis and Morizane labs towards making this a reality for those patients,” said Ben Shepherd, Ph.D., Co-Founder and CEO of Trestle.

The technology to be commercialized by Trestle not only enables the rapid fabrication of vascularized kidney tissue at scale for regenerative medicine solutions but also paves the way for increasing tissue maturation and vascular development within stem cell-derived organoids in response to fluid flow. These are essential components of building large, functional tissues which will one day be used to supplement, or even replace, renal function in kidney failure patients.

“Trestle was founded with the belief that recreating patterns and processes found in nature is key to building functional tissues. The next era of cell therapies and regenerative medicine, particularly for addressing diseases arising from complex organs such as the kidney, will rely on the integration of multiple advancing disciplines. Developmental biology, stem cell biology, and 3D biofabrication are core components of this approach. We look forward to integrating the innovative work from Drs. Lewis and Morizane into the platform we are building,” said Alice Chen, Ph.D., Co-Founder and CSO Trestle.

Research
Technical Ceramic AM Market 2023

108 technical ceramic AM companies individually surveyed and studied. Core technical ceramic AM market generated $113 million in 2022. Market expected to grow to over $2 billion by 2032 at 33.5% CA...

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he co-founded London-based VoxelMatters. Today the company publishes the leading news and insights websites VoxelMatters.com and Replicatore.it, as well as VoxelMatters Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Save
Accept all Services