Additive ManufacturingAutomotiveGenerative Design

Tesla shows massive generatively designed part in Model Y underbody

The part will go from 70 components to just one

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

With a record market cap, Tesla is among the automakers that are best positioned to get through the COVID-19 crisis. The recent – possibly a bit uncalled for – tweets by its exuberant CEO  do not seem to be getting in the way of the company’s climb to the top of the automotive world. And the reason is that its technology is – according to experts – six to ten years ahead of competitors (this used to be true for Apple, and look where it got). Tesla is not very open about its use of AM, however in the latest Q1 financial release, the company showed a very large, generatively designed metal part that will go into its new Model Y’s.

The part in question is the Model Y rear underbody, which could go from 70 different parts to just two and eventually, a single piece of metal. Tesla’s factories have been making significant strides in automation. The part in question is likely produced using a new large casting machine that Tesla recently installed. It probably was prototyped using additive manufacturing and, in the future, a hybrid additive-subtractive metal deposition technology may be used as a preferred method to produce a part of this size (it would make very little sense to entirely cut this part from whole) as a single component.*

Recently a Tesla Model Y teardown video had also shown a 3D printed component, a partly 3D printed part in the car’s HVAC system which was likely 3D printed to address an imperfection of original mold and avoid a launch delay.

If confirmed – as it seems to be – the use of 3D printing for sand casts such as that offered by voxeljet and ExOne for to enable the reduction of subassemblies (form 70 to 1) in a custom cast can bring about a significant transition even before metal AM can be used to produce such large metal parts directly. Producing a complex cast that can reduce the number of parts to this degree needs digital casting technology. This would mean that the use of sand 3D printing processes to improve upon the possibilities of the traditional casting industry could become increasingly mainstream as it is able to support high throughput production as required by the automotive segment.

This part, however, is an entirely different ballpark. We are talking about a serially manufactured massive metal part. It also shows evidence of topology optimized generative design, which will likely improve weight and performance significantly and could eventually make the use of AM even more appealing.

The long term implication is that, if the part proves cost-effective – as it very likely will – the same approach will soon be used for a number of other currents and future vehicles, giving Tesla an even greater lead on slow-moving competitors.

Thomas Ulbrich, a Volkswagen board member in charge of the electric vehicle business, said that Tesla “is 10 years ahead of competitors in manufacturing electric vehicles and developing software […] Tesla is an impressive automaker, which is a driving force for us. Tesla has more than 10 years of experience, but we will soon catch up.”

In terms of adopting AM technology, Volkswagen has been quite aggressive in implementing both polymer and metal AM technologies from HP, favoring the use of AM for serial production multiple small components.

*This article was modified to reflect the fact that the part in question was likely manufactured using a new large casting machine and not using a hybrid additive manufacturing method.

 

 

 

Research
Technical Ceramic AM Market 2023

108 technical ceramic AM companies individually surveyed and studied. Core technical ceramic AM market generated $113 million in 2022. Market expected to grow to over $2 billion by 2032 at 33.5% CA...

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he co-founded London-based VoxelMatters. Today the company publishes the leading news and insights websites VoxelMatters.com and Replicatore.it, as well as VoxelMatters Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Save
Accept all Services