Advanced MaterialsAdvanced PolymersAM ResearchMaterials

Stanford engineers develop new nanoscale 3D printing material

The material is able to absorb twice as much energy as other similarly dense materials and could be used to create better lightweight protective lattices

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Researchers at Stanford have developed a new material for printing at the nanoscale – capable of creating structures that are a fraction of the width of a human hair. The researchers have used it to print minuscule lattices that are both strong and light. In a paper published in Science, the researchers demonstrated that the new material is able to absorb twice as much energy compared to other 3D printed materials of a comparable density. In the future, their invention could be used to create better lightweight protection for fragile pieces of satellites, drones, and microelectronics.

“There’s a lot of interest right now in designing different types of 3D structures for mechanical performance,” said Wendy Gu, an assistant professor of mechanical engineering and a corresponding author on the paper. “What we’ve done on top of that is develop a material that is really good at resisting forces, so it’s not just the 3D structure, but also the material that provides very good protection.”

Metal nanoclusters

To design a better material for 3D printing, Wendy Gu and her colleagues incorporated metal nanoclusters (tiny clumps of atoms) into their printing medium. The researchers are printing with two-photon lithography – where the printing material is hardened through a chemical reaction initiated by laser light. They found that their nanoclusters were very good at jump-starting this reaction, and resulted in a material that was a composite of the polymer printing medium and metal.

“The nanoclusters have very good properties for taking in the laser light, and then converting that to a chemical reaction,” said Wendy Gu. “And they’re able to do this with several classes of polymers, so they’re even more versatile than I expected.”

Stanford engineers develop new nanoscale 3D printing material. The material could be used to create better lightweight protective lattices.
Tiny, but strong, Stanford logo made using nanoscale 3D printing. (Image credit: John Kulikowski).

The Stanford researchers were able to combine metal nanoclusters with acrylates, epoxies, and proteins – several common classes of polymers that are used in 3D printing. The nanoclusters also helped speed up the printing process. By combining the nanoclusters with proteins, for example, Wendy Gu and her colleagues were able to print at a rate of 100 millimeters per second – about 100x faster than had previously been achieved in nanoscale protein printing.

The researchers tested their new nanoscale material with several different lattice structures – prioritizing the ability to carry a heavy load in some and the ability to absorb an impact in others. With the nanocluster-polymer composite, all the structures demonstrated an impressive combination of energy absorption, strength, and recoverability – the ability to squish and spring back, to put it simply.

“The lattice structure certainly matters, but what we’re showing here is that if the material it’s made out of is optimized, that’s more important for performance,” said Wendy Gu. “You don’t have to worry about exactly what the 3D structure is if you have the right materials to print with.”

Mimicking the natural world

In some ways, Wendy Gu and her colleagues are trying to mimic what nature has already perfected. Bone, for example, gets its resilience from the combination of a hard exterior, nanoscale porosity, and small amounts of soft material. This combination of a 3D structure and multiple, well-designed materials allows our bones to transfer energy without breaking (most of the time) and still remain relatively lightweight. Ideally, 3D printed protective structures would also have multiple types of material within them, some harder and some softer, to better disperse an impact and resist crushing.

“Since the nanoclusters are able to polymerize these different classes of chemicals, we may be able to use them to print multiple materials in one structure,”said Wendy Gu. “That’s one thing we’d like to aim for.”

Research
Metal AM Market 2023

444 metal AM companies individually surveyed and studied. Core metal AM market generated over $2.8 billion in 2022. Market expected to grow to over $40 billion by 2032 at 30% CAGR. This new market ...

Edward Wakefield

Edward is a freelance writer and additive manufacturing enthusiast looking to make AM more accessible and understandable.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Save
Accept all Services

Newsletter

Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.