Advanced MaterialsAM ResearchMaterialsMetals

Sandia scientists create new 3D printed superalloy

The high-performance alloy could help power plants generate more electricity while producing less carbon

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Researchers from Sandia National Laboratories have shown that a new 3D printed superalloy could help power plants generate more electricity while producing less carbon. The scientists, collaborating with researchers at Ames National Laboratory, Iowa State University, and Bruker Corp., used a 3D printer to create a high-performance metal alloy, or superalloy, with an unusual composition that makes it stronger and lighter than state-of-the-art materials currently used in gas turbine machinery. The findings could have broad impacts across the energy sector as well as the aerospace and automotive industries, and hints at a new class of similar alloys waiting to be discovered.

“We’re showing that this material can access previously unobtainable combinations of high strength, low weight, and high-temperature resiliency,” said Andrew Kustas, a Sandia scientist. “We think part of the reason we achieved this is because of the additive manufacturing approach.”

The team published their findings in the journal Applied Materials Today.

Sandia scientists create new 3D printed superalloy that could help power plants generate more electricity while producing less carbon.
Source: Sandia. Photo Credit: Craig Fritz.

Essential for power plant turbines

About 80% of electricity in the US comes from fossil fuel or nuclear power plants, according to the US Energy Information Administration. Both types of facilities rely on heat to turn turbines that generate electricity. Power plant efficiency is limited by how hot metal turbine parts can get. If turbines can operate at higher temperatures, “then more energy can be converted to electricity while reducing the amount of waste heat released to the environment,” said Sal Rodriguez, a Sandia nuclear engineer who did not participate in the research.

Sandia’s experiments showed that the new superalloy – 42% aluminum, 25% titanium, 13% niobium, 8% zirconium, 8% molybdenum, and 4% tantalum – was stronger at 800 degrees Celsius (1,472 degrees Fahrenheit) than many other high-performance alloys, including those currently used in turbine parts, and still stronger when it was brought back down to room temperature.

“This is therefore a win-win for more economical energy and for the environment,” said Sal Rodriguez.

Energy is not the only industry that could benefit from the findings. Aerospace researchers seek out lightweight materials that stay strong in high heat. Additionally, Ames Lab scientist, Nic Argibay, said Ames and Sandia are partnering with industry to explore how alloys like this could be used in the automotive industry.

“Electronic structure theory led by Ames Lab was able to provide an understanding of the atomic origins of these useful properties, and we are now in the process of optimizing this new class of alloys to address manufacturing and scalability challenges,” said Nic Argibay.

The Department of Energy and Sandia’s Laboratory Directed Research and Development program funded the research.

Sandia scientists create new 3D printed superalloy that could help power plants generate more electricity while producing less carbon.
Source: Sandia. Photo Credit: Craig Fritz.

Changes in materials science

This new research further demonstrates how AM can be repurposed as a fast, efficient way to craft new materials. Sandia team members used a 3D printer to quickly melt together powdered metals and then immediately print a sample of it.

Sandia’s creation also represents a fundamental shift in alloy development because no single metal makes up more than half the material. By comparison, steel is about 98% iron combined with carbon, among other elements.

“Iron and a pinch of carbon changed the world,” said Andrew Kustas. “We have a lot of examples of where we have combined two or three elements to make a useful engineering alloy. Now, we’re starting to go into four or five or beyond within a single material. And that’s when it really starts to get interesting and challenging from materials science and metallurgical perspectives.”

Scalability and cost

Moving forward, the team is reportedly interested in exploring whether advanced computer modeling techniques could help researchers discover more members of what could be a new class of high-performance, additive manufacturing-forward superalloys.

“These are extremely complex mixtures,” said Michael Chandross, a Sandia scientist and expert in atomic-scale computer modeling who was not directly involved in the study. “All these metals interact at the microscopic – even the atomic – level, and it’s those interactions that really determine how strong a metal is, how malleable it is, what its melting point will be, and so forth. Our model takes a lot of the guesswork out of metallurgy because it can calculate all that and enable us to predict the performance of a new material before we fabricate it.”

Andrew Kustas said there are challenges ahead. For one, it could be difficult to produce the new superalloy in large volumes without microscopic cracks, which is a general challenge in additive manufacturing. He also said the materials that go into the alloy are expensive, so, the alloy might not be appropriate in consumer goods for which keeping cost down is a primary concern.

“With all those caveats, if this is scalable and we can make a bulk part out of this, it’s a game changer,” concluded Andrew Kustas.

Research
Consumer Products AM 2024

This new market study from VoxelMatters provides an in-depth analysis and forecast of polymer and metal AM in the consumer products industry across the three core segments of the additive manufactu...

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Save
Accept all Services

Newsletter

Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.