AM ResearchMaterials

Researchers show promise of revolutionizing light-driven 3D printing

Chemists from The University of Texas at Austin use visible light instead of ultraviolet light to print with inexpensive materials

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

According to the University of Texas at Austin, chemistry researchers at the university have developed a new process that has the potential to revolutionize light-driven 3D printing by using visible light instead of ultraviolet light. The new process allows for highly precise, rapid, and inexpensive 3D printed materials, and it holds potential for a wide range of applications, including in dentistry and medicine. The process is outlined in a paper published in the journal ACS Central Science.

Light-driven 3D printing, or photopolymerization, is faster and much more precise than many other additive manufacturing approaches, like the filament-style printing that often comes to mind for hobbyists,” said Zak Page, assistant professor of chemistry and a corresponding author on the paper. “This new process further improves the precision of light-driven 3D printing, while making it more accessible and efficient, opening a lot of possibilities.”

The research team’s breakthrough was enabled by a chemical process called triplet fusion. This process uses unique chemical structures that can convert low-energy, long-wavelength light, such as green light, into shorter, higher-energy wavelengths of light, such as violet light. Page and colleagues previously created a process that directly used low-energy visible light without triplet fusion for 3D printing. However, the new triplet fusion process operates by a mechanism that will improve the spatial precision of printed structures, while simultaneously showing enhanced resin stability that will facilitate commercialization.

The researchers believe the new process could be harnessed for engineering materials for medicine, robotics, and electronics where interfacing with delicate human tissues is necessary – improving things such as joint replacements, prosthetics, and implants.

“This also expands the kind of composites that we can create,” said Sean Roberts, associate professor of chemistry and co-corresponding author. “Currently, composites are limited in 3D printing because they can easily scatter UV light. Longer wavelengths of light are less easily scattered and can often penetrate deeper into materials. This allows for a more flexible printing process, and we can create things that are stronger, more flexible, or more resistant.”

Connor J. O’Dea, Jussi Isokuortii, and Emma E. Comer of the University of Texas at Austin were also authors of the paper. The research was funded by the National Science Foundation, the Robert A. Welch Foundation, and the Research Corporation for Science Advancement.

Research
Composites AM 2024

746 composites AM companies individually surveyed and studied. Core composites AM market generated over $785 million in 2023. Market expected to grow to $7.8 billion by 2033 at 25.8% CAGR. This new...

Edward Wakefield

Edward is a freelance writer and additive manufacturing enthusiast looking to make AM more accessible and understandable.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Save
Accept all Services

Newsletter

Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.