AM Press ReleasesBioprinting

Readily3D’s volumetric bioprinters will make pancreatic tissue for ENLIGHT project

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

As part of the European project ENLIGHT, Readily3D is joining forces with leading academic centers and companies across Europe to develop a living model of the pancreas to enable better testing of diabetes medication. This model will be shaped using 3D bioprinters made by Readily3D, leveraging tomographic printing to produce centimeter-scale structures in less than 30 seconds.

The prints themselves will be done at UMC Utrecht and EPFL, which jointly pioneered the use of volumetric printing for biofabrication in 2019, with specialized stem cells developed by ETH Zurich and the University of Naples. Damien Loterie, CEO of Readily3D: “We are excited to be part of the ENLIGHT project and to push the frontiers of biofabrication together with our partners.” The ENLIGHT project has received a 4-year grant from the European innovation Council fund Horizon 2020. The aim is to realize the first working tissue model within three years.

3.6 million euros

The ENLIGHT partners have been granted a contribution of 3.6 million euros by the European Innovation Fund Horizon 2020. Led by the UMC Utrecht, the multidisciplinary consortium consists of Readily3D (Switzerland), Ecole Polytechnique Fédérale de Lausanne and ETH Zürich (Switzerland), the University of Naples Federico II (Italy), AstraZeneca (Sweden), Rousselot (Belgium), and Fondazione Giannino Bassetti (Italy).

Readily3D will be joining the research program as a manufacturer of bioprinters and will work on adapting its unique volumetric printing technology to the particular needs of pancreatic structures.

Readily3D's volumetric bioprinters will make pancreatic tissue for ENLIGHT project
ENLIGHT Project partners.

Volumetric bioprinting

To reach their goal, the ENLIGHT researchers want to force two breakthroughs. The first is Readily3D’s newly developed bioprinter, which can reproduce part of the human body, including living cells, at lightning speed. Where conventional 3D printers can take several hours to print centimeter-scale structures, volumetric bioprinters can do it within a minute. This is important because the survival rate of the cells decreases as printing takes longer.

Paul Delrot, CTO of Readily3D: “With its rapid build speed, low light dose and sterile build environment, tomographic bioprinters open up previously inaccessible applications in biofabrication.” Once the bioprinter has created a living 3D model of human tissue, the second step will be to add signaling molecules, which tell the cells how to behave based on external stimulation. This is needed to recreate functionality at the human organ level.

Readily3D's volumetric bioprinters will make pancreatic tissue for ENLIGHT project
The Tomolight volumetric bioprinter from Readily3D (Credits: Readily 3D SA)

Advantages of bioprinted tissue

The use of tissue from a 3D bioprinter has a number of major advantages. When testing drugs, for example. Artificial models could eliminate the need for animal testing, accelerate drug discovery for pharmaceutical industries. This type of personalized medicine could also reduce the burden on individual patients, as they would no longer have to experiment with different drugs until one works. This is not only important for diabetes patients but can – if the model works – also be used for other diseases, such as cancer. Professor Riccardo Levato, biofabrication researcher at the UMC Utrecht and coordinator of ENLIGHT: “With cells from a patient, practitioners can recreate the diseased tissue.

Readily3D's volumetric bioprinters will make pancreatic tissue for ENLIGHT project
Tissue vascularization. Image Credits: UMC Utrecht

Subsequently, a laboratory test can be performed to determine which candidate medication has the greatest effect. This spares the patients a long search with unpleasant side effects, reduces treatment costs, and leads to the best available care for individual patients.’’

Proof of principle

It is no coincidence that the ENLIGHT project initially focuses on diabetes and hence the pancreas with new bioprinting techniques. The pancreas produces enzymes and hormones, including insulin; in diabetes it does not do so or does so insufficiently. “Diabetes is a deliberate choice because of its social relevance. Besides asthma, it is the most common chronic disease in children. Despite the growing demand for care for patients with diabetes, the development of new drugs (besides insulin therapy) is lagging behind,” the ENLIGHT coordinator says. “At the same time, the pancreas is our ‘proof of principle”. Once we manage to make a living model of the pancreas and actually test diabetes medication with it, this will prove the effectiveness of the new bioprinting technique. Then we can use those techniques much more widely. In principle, you can make living models of all types of tissue with it.”

The next four years are aimed at creating a living model of the pancreas, including hormonal functions. In the longer term, the ENLIGHT projects is more ambitious, aiming to provide new tools to resolve the shortage of donor organs for transplantation and regenerative medicine.

Research
Polymer AM Market Opportunities and Trends

741 unique polymer AM companies individually surveyed and studied. Core polymer AM market generated $4.6 billion in 2021. Market expected to grow to over $34 billion by 2030 at 24.8% CAGR. This new...

Victor Anusci

Victor does not really exist. He is a pseudonym for several writers in the 3D Printing Media Network team. As a pseudonym, Victor has also had a fascinating made-up life story, living as a digital (and virtual) nomad to cover the global AM industry. He has always worked extra-hard whenever he was needed to create unique content. However, lately, as our editorial team has grown, he is mostly taking care of publishing press releases.

Related Articles

Back to top button

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services