Aerospace AMDefenseIndustrial Additive Manufacturing

Raytheon and Northrop complete second hypersonic weapon flight test

The Hypersonic Air-breathing Weapon Concept is powered by a fully 3D printed scramjet engine

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Raytheon Missiles & Defense, a Raytheon Technologies (NYSE: RTX) business, in partnership with Northrop Grumman (NYSE: NOC), successfully completed the second flight test of the scramjet-powered Hypersonic Air-breathing Weapon Concept, or HAWC, for the Defense Advanced Research Projects Agency and the U.S. Air Force. As reveladed when the partnership was first announced in 2019, Northrop’s scramjet engine is entirely 3D printed.

This flight test applied the data and lessons learned from the first flight to mature the operationally relevant weapon concept design. The test met all primary and secondary objectives, including demonstrating tactical range capabilities.

“The test demonstrated how we’ve rapidly matured affordable scramjet technology, which is the basis for air-breathing weapons,” said Colin Whelan, president of Advanced Technology for Raytheon Missiles & Defense. “Our second HAWC flight test success is an important milestone for our nation as we advance hypersonic systems.”

Raytheon and Northrop complete second flight test of Hypersonic Air-breathing Weapon Concept, powered by a fully 3D printed scramjet engine
Hypersonic vehicles operate at extreme speeds and high altitudes. Raytheon and Northrop Grumman are teaming to accelerate air-breathing hypersonic vehicle development.

During the flight test, after releasing HAWC from an aircraft and accelerating to hypersonic speeds using the scramjet engine, the vehicle flew a trajectory that engineers designed to intentionally stress the weapon concept to explore its limits and further validate digital performance models. These models, grounded in real-world flight data, are being used to accurately predict and increase performance as the system matures.

“The second flight test is a big step toward scramjet technology being mission ready,” said Dan Olson, VP and General Manager of Weapon Systems for Northrop Grumman. “Nearly twenty years of scramjet propulsion research and development have come to fruition to significantly advance our nation’s weapon capabilities.”

Scramjet engines use high vehicle speed to forcibly compress incoming air before combustion to enable sustained flight at hypersonic speeds – Mach 5 or greater. The system was designed to use a widely available hydrocarbon fuel, and since it uses air for combustion, it does not have to carry the added weight of an onboard oxidizer. These key attributes allow for a safe, efficient, and tactically sized, long-range hypersonic weapon. By traveling at these speeds, hypersonic weapons like HAWC can reach their targets more quickly than traditional missiles, allowing them to potentially evade defense systems.

Raytheon Missiles and Defense and Northrop Grumman have been working together since 2019 to develop, produce and integrate Northrop Grumman’s scramjet engines onto Raytheon’s air-breathing hypersonic weapons. Their combined efforts enable both companies to produce air-breathing hypersonic weapons, the next generation of tactical missile systems. The weapon is one of the competitors in the a $200 million U.S. Defense Advanced Research Projects Agency’s HAWC project, short for Hypersonic Air-Breathing Weapon Concept.

“We have a flight test planned for the near future where we will begin flying this particular class of weapon system,” Tom Bussing, Vice President of Raytheon’s Advanced Missile System Segment, said during a briefing at Paris Air Show in 2019, when the project was first announced. While the exact schedule is classified, Bussing noted that the companies have already conducted “significant” ground tests

“The combustor, everything that we do now is done by additive manufacturing, so its driving affordability into the hypersonic boost missile’s scramjet engine. We are also looking at ways to reduce the weight so we can have more fuel, more payload,” he said.

The entirety of Northrop’s scramjet is 3D printed using advanced materials, said John Wilcox, the company’s Vice President of Advanced Programs and Technology.

“There gets to be points where you have to weld additively manufactured parts, but right now even the full combustor [is printed],” he said. “We think we’re the first to ever 3D print a full combuster for an air-breathing scramjet engine. That’s what’s going to drive the affordability for air-breathing scramjet missiles.”

Research
Metal AM Market 2023

444 metal AM companies individually surveyed and studied. Core metal AM market generated over $2.8 billion in 2022. Market expected to grow to over $40 billion by 2032 at 30% CAGR. This new market ...

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he co-founded London-based VoxelMatters. Today the company publishes the leading news and insights websites VoxelMatters.com and Replicatore.it, as well as VoxelMatters Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Save
Accept all Services

Newsletter

Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.