3D Printing Processes3D Printing Service ProvidersArtCase StudiesDecision MakersLFAMVisual Marketing

Papergraphics 3D prints larger than life Greek statue with Massivit 1800

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

The low cost of materials and extremely high speed of the Massivit 1800 3D printer is inspiring some of the company’s new distributor to experiment with its capabilities. Since the system is targeted primarily at the visual marketing industry, many of its current customers and resellers are used to larger than life prints. Except now, at Papergraphics, they are larger than life 3D prints and what better subject than a Greek god to demonstrate it?

Papergraphics took on distribution of the Massivit 3D printers in 2016. The UK company exhibited the Massivit 3D printer at a recent show in the Netherlands using this as an opportunity to create their own giant 3D models. When 3D printing with the Massivit 1800 (and in general) you need to plan for support angles, structural strength, joining points, and finishing. Using this information, the Massivit software will convert it into layers for printing.

The finished statue has a completed height of 3,400 mm. The Massivit printer can print a single piece 1,800 mm high (that’s close to two meters), 1,500mm wide and 1,200mm deep.

“We printed in sections comprising of legs, torso, head, hands, robe edge and shield, says Graham De Kock, Technical & Service Manager at Papergraphics. “This allowed more structureless printing which is quicker, easier to handle and finish. The largest single component on this model being 1,600 mm tall.”

Physical printing time was approximately 42 hours for all parts, which is significantly quicker than any other 3D printing technology. Assembly and finishing took 6 days. Some reverse angles required printing of support pillars or posts. These were cut off post printing. Any remaining hole was filled with Dimengel, the Acrylic polymer gel that the model is made up of, using a UV torch to cure the gel. The benefit is it cures immediately and it is strong.

The team sprayed on 3 coats of car filler with a spray gun to smooth out the layers that make up the structure sanding between coats. Where they noted slightly deeper grooves or imperfections they used Dimengel or applied a part body filler and then sanded it. They went on to create a steel base to support the model, attaching two L shaped steel beams as the central support structure. The 1st runs from the models foot to shoulder and the 2nd runs from the the other foot to waist height. These beams were bolted to the base so that they could later be unbolted for transport.

“We commit to offering the highest level of service, training and support” says Graham DeKock, “to truly offer this we undertake the type of project that we would expect our customers to produce, thus equipping us with the advanced skills, knowledge and know how required.”

To assemble the components, the team placed the legs over the supporting beams, then filled them with polyurethane expanding foam. The mixture foams up inside the model, providing added strength and bonding the model shell to the internal posts. It is important to not add too much polyurethane at a time as heat is generated and expanding forces are applied within the shell of the model.

We then cleaned the next surfaces that were to be joined. In this instance it was the waist of the model and the base of the torso and used a two part superglue to fix them together. Once glued we filled any gaps with Dimengel and then continued filling with Polyurethane, being careful to use a single batch to fill the joined area for added strength. We repeated this process in joining the hands, robe and finally the head. It is necessary to cut holes above some join points, ie in the arm, to allow you to pour in the polyurethane, and then use the cut out piece to refill the hole and then smooth over with Dimengel.

Once all joins were completed they applied an undercoat to the model to check for imperfections and then sanded and filled these. Finally, they applied 2 coats of a textured spray paint to give the model its final, highly realistic, stone appearance.

 

Research
Polymer AM Market Opportunities and Trends

741 unique polymer AM companies individually surveyed and studied. Core polymer AM market generated $4.6 billion in 2021. Market expected to grow to over $34 billion by 2030 at 24.8% CAGR. This new...

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he co-founded London-based 3dpbm. Today the company publishes the leading news and insights websites 3D Printing Media Network and Replicatore, as well as 3D Printing Business Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Back to top button

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services