3D Printing ProcessesAcquisitions, Mergers & PartnershipsAM SoftwareVolumetric 3D Printing

NVIDIA partners with HP Labs to introduce GVDB voxel level 3D printing

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Computer graphics hardware and software giant NVIDIA revealed its intention to begin targeting real GVDB voxel-level 3D printing through both dedicated software and hardware. This strategy is meant to target the current limitations in 3D printing objects that are made of several different materials and parts. Identified challenges in 3D printing include multiple colors, differing densities and the use of a mix of materials.

At last month’s GPU Technology Conference, HP Labs and NVIDIA described how they’ve worked together to overcome these challenges using NVIDIA’s new GVDB Voxel open-source software development kit. Jun Zeng, principal scientist for HP Labs, and Rama Hoetzlein, lead architect for GVDB Voxels, presented a statue of a human figure with wings that combined these challenging elements.

Simplified, their goal was to be able to 3D print the statue while adjusting the density of materials to account for external forces. That increased structural integrity where it’s needed while minimizing the amount and weight of material needed to produce it.


Zeng told a roomful of GTC attendees that HP Labs had started using GPUs to more quickly process 3D printing voxels (volumetric pixels — essentially pixels in 3D space). He anticipates that printing technology and scale will rapidly increase computing demands in the future.

Interactive in-filling for process engineering. The finished part has a specific shape (left), while the internal Voronoi foam can vary in cell density (right). Generation of new variations for in-filling is interactive on Pascal GPUs. Pre-visualized rendering with multiple-materials for surface and internal styling occurs at the same time with real-time feedback.

3D Printing 2.0

NVIDIA’s GVDB Voxels SDK has eased the complexity of 3D printing workflows by offering a platform for large-scale voxel simulation and high-quality ray-traced visualizations. And it allows for continuous data manipulation throughout the process.

“Iteration can happen during infilling, or while analyzing and determining stress,” said Hoetzlein.

Hoetzlein said the SDK is designed for simple efficient computation, simulation and rendering, even when there’s sparse volumetric data. It includes a compute API that generates high-resolution data and requires minimal memory footprint, and a rendering API that supports development of CUDA and NVIDIA OptiX pathways, allowing users to write custom rendering kernels.

The researchers’ effort started with a polygonal statue, which was subject to a stress simulation before the GVDB Voxels took over. The object is converted into a model made of small voxel cubes. Then the software optimizes the in-filling structure, varying the density based on the results of the stress simulation.

What they found was that combining GVDB Voxels with the latest Pascal architecture GPUs generated results 50 percent faster than the previous generation of GPUs, and up to 10x faster than CPU techniques. The SDK makes this possible by storing data only at the surface of the object. That reduces memory requirements without sacrificing resolution.

Zeng said that oftentimes the limitations of 3D printing devices dictate what designers can do. With the NVIDIA GVDB Voxels SDK, designers gain new flexibility.


Composites AM 2024

746 composites AM companies individually surveyed and studied. Core composites AM market generated over $785 million in 2023. Market expected to grow to $7.8 billion by 2033 at 25.8% CAGR. This new...

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he co-founded London-based VoxelMatters. Today the company publishes the leading news and insights websites VoxelMatters.com and Replicatore.it, as well as VoxelMatters Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services


Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.