Construction 3D Printing

New research finds triaxial-shaped, flattened porosity in 3D printed concrete

Authors call for more research to be conducted into the effect of stress concentrations

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

A study published by researchers at Stellenbosch University in South Africa presented a first and comprehensive microstructural investigation of construction 3D concrete printing porosity using X-ray computed tomography to visualize and quantify porosity, pore sizes, shapes and distributions in extrusion-based 3D printed concrete.

Concrete structures additively manufactured by extrusion-based 3D concrete printing are reportedly orthotropic in mechanical behavior and exhibit relative weakness in interfacial regions. Microstructure, including porosity content, 3D porosity distribution and pore morphology presents a physical basis for these phenomena.

Orthotropic materials are a subset of anisotropic materials; their properties depend on the direction in which they are measured. Orthotropic materials have three planes/axes of symmetry (an isotropic material, in contrast, has the same properties in every direction).


3D printed plastic molds were used to sample specimens from freshly 3D printed concrete filaments, for minimum disturbance. As a reference, similar specimens of the exact same concrete mix, but cast without compaction, instead of being 3D printed were included in the study.

A fixed diameter of 20 mm, but varying height was used to include a single filament layer (10 mm), two layers (20 mm) and four layers (40 mm). Both typical horizontal interfaces in multi-layer elements and vertical interfaces between multilaterally deposited filaments are studied.

Whilst a single 3D printable concrete mix were considered, print variables of pass time (0 to 60 minutes with 15 minute intervals) and print speed (80, 100 and 120 mm/s) are considered to investigate their potential alteration of the microstructure.

Findings were significant, indicating tri-axial spheroid shaped air voids present in printed specimens, elongated and flat in the print direction, compared to mostly spherical voids in cast specimens.

According to the authors of the study, this prompts for more research to be conducted into the effect of stress concentrations at micro-cracks or voids in 3D printed concrete, which especially impacts mechanical behavior.

Furthermore, it is found that vertical and horizontal interlayers comprise of similar porosity, and that it is inaccurate to qualify the homogeneity of typically fissile 3D printed concrete elements based solely on superficial cross-sectional photographic evidence from saw-cut samples.

Composites AM 2024

746 composites AM companies individually surveyed and studied. Core composites AM market generated over $785 million in 2023. Market expected to grow to $7.8 billion by 2033 at 25.8% CAGR. This new...

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he co-founded London-based VoxelMatters. Today the company publishes the leading news and insights websites and, as well as VoxelMatters Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services


Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.