NASA tests Copper3D antibacterial 3D printing filament for space
Studies focus methods to reduce microbial contamination for interplanetary protection.

The NASA Nebraska Space Grant, in collaboration with the University of Nebraska at Omaha and Chilean company (based in the USA) Copper3D, have begun a study about the potential of a new antibacterial material for 3D printing. This materials, a polymer of Polylactic Acid (PLA) containing a patented additive based on copper nanoparticles and other enhancing elements, has been shown to eliminate a wide range of fungi, viruses and bacteria called PLACTIVETM.
One of the current research priorities of NASA is related to long-term space missions, which undoubtedly will bring enormous technical and human challenges to be carried out successfully and safely. Some of these challenges have to do with the health and well-being of astronauts during these missions, challenges that can range from quick access to customized medical applications, parts or medical instruments manufactured “on demand”, prosthetics, orthoses or elements for emergency treatment and rapid wound closure, among many others.
One of the technologies that can solve many of these challenges is 3D printing, which, due to its enormous versatility and relatively low cost, would allow building in situ an infinity of objects that might be needed in these long-term missions. But not everything is perfect with 3D printing since it has been determined that one issue inherent in this technology is relative to the porous nature of the polymers used and the complex geometries of the 3D printed objects. These can increase the risk of hosting a high bacterial load.
According to Dr. Claudio Soto, Medical Director and co-founder of Copper3D, the new material has already passed very exhaustive laboratory tests in Chile and the USA. Microbiological burden reduction studies that have demonstrated their ability to eliminate in a few hours upward of 99.99% of dangerous bacterial strains such as Escherichia coli and Staphylococcus aureus. These strains that are also very present in the hospital environment, causing millions of infections and deaths per year worldwide”.
The objective of this research is threefold. As explained by Jorge Zuniga Ph.D, researcher of the University of Nebraska at Omaha and scientific director of this study, the first goal was to describe the development of 3D printed prostheses with an antibacterial filament. Then it went onto verify the antibacterial properties of 3D printed prostheses and finally to develop a remote fitting methodology and determine patient satisfaction after using a 3D printed antibacterial finger prosthesis. This study will also set the scientific basis for future studies on the impact of this new technology on countless new antibacterial applications that solve serious health and functional problems both on earth and in space”.
Andrés Acuña, CEO and co-founder of Copper3D, mentions: “Our company started with a strong emphasis on innovation and our focus will continue to be linked to innovation and development of new materials and products that achieve a real impact on the quality of life of the people. We are very excited about the results that may come out of this study with Dr. Jorge Zuniga, the University of Nebraska at Omaha and NASA. We think that this collaboration could be maintained over time to explore new technologies in the field of Additive Manufacturing that can save lives in complex contexts such as intra-hospital infections and environments as hostile as long-duration space missions”.