AM for SpaceAM Research

NASA forms two new institutes focused on 3D printing and quantum technology

Each institute will receive up to $15 million over the period of five years, and will be led by US universities

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

In support of its effort to support its long-term exploration goals, NASA has announced plans to create two new institutes to develop technology in critical areas for engineering and climate research – 3D printing and quantum technology. The two new Space Technology Research Institutes (STRIs) will leverage teams led by US universities to create multidisciplinary research and technology development programs critical to NASA’s future. By bringing together science, engineering, and other disciplines from universities, industry, and non-profits, the institutes aim to impact future aerospace capabilities through investments in early-stage technology.

One of the research institutes will focus on quantum sensing technology in support of climate research. The other will work to improve understanding and help enable rapid certification of metal parts created using advanced manufacturing techniques.

“We’re thrilled to draw on the expertise of these multi-university teams to create technology for some of our most pressing needs,” said Jim Reuter, associate administrator for the agency’s Space Technology Mission Directorate at NASA Headquarters, in Washington. “Their work will enable next-generation science for studying our home planet and broaden the use of 3D printed metal parts for spaceflight with state-of-the-art modeling.”

Each institute will receive up to $15 million over five years.

Quantum Pathways Institute

The University of Texas at Austin will lead the Quantum Pathways Institute – focused on advancing quantum sensing technology for next-generation Earth science applications. Such technology would enable a new understanding of our planet and the effects of climate change.

Quantum sensors use quantum physics principles to potentially collect more precise data and enable unprecedented science measurements. These sensors could be particularly useful for satellites in orbit around Earth to collect mass change data – a type of measurement that can tell scientists about how ice, oceans, and land water are moving and changing. Though the basic physics and technology for quantum sensors have been proven in concept, work is required to develop quantum sensors at the precisions necessary for next-generation science needs during spaceflight missions.

NASA forms two new institutes focused on 3D printing and quantum technology - to be led by US universities.
A NASA project called Long Life Additive Manufacturing Assembly (LLAMA) is developing methods for 3D printing rocket engine components. Credits: NASA.

“Quantum sensing methods have shown a great deal of promise in computing, communications, and now for Earth science remote sensing applications,” said Dr. Srinivas Bettadpur, principal investigator for the institute and professor of aerospace engineering and engineering mechanics at the University of Texas at Austin. “Our intent is to advance this technology and get it ready for space as soon as we can.”

The institute will work to further advance the physics underlying quantum sensors, design how these sensors could be built for space missions, and understand how mission design and systems engineering would need to adapt to accommodate this new technology.

Partners of the institute include the University of Colorado Boulder; the University of California, Santa Barbara; the California Institute of Technology; and the National Institute of Standards and Technology.

Institute for Model-Based Qualification & Certification of Additive Manufacturing (IMQCAM)

Carnegie Mellon University, in Pittsburgh, will lead Institute for Model-based Qualification & Certification of Additive Manufacturing (IMQCAM) aiming to improve computer models of 3D printed metal parts and expand their utility in spaceflight applications. The institute will be co-led by Johns Hopkins University, in Baltimore.

Metal parts 3D printed have proven useful for applications in rocket engines, for example. However, efficient certification and use of such parts requires high-accuracy predictions of their characteristics.

“The internal structure of this type of part is much different than what’s produced by any other method,” said Tony Rollett, principal investigator for the institute and US Steel professor of metallurgical engineering and materials science at Carnegie Mellon University. “The institute will focus on creating the models NASA and others in industry would need to use these parts on a daily basis.”

Detailed computer models will allow engineers to understand the parts’ capabilities and limitations – such as how much stress the parts can take before breaking. Such models will provide the predictability of part properties based on their processing which is key for certifying the parts for use. The institute will develop digital twins for 3D printed parts made from spaceflight materials that are commonly used for 3D printing, as well as evaluating and modeling new materials.

Somnath Ghosh, the Michael G. Callas professor in civil and systems engineering at Johns Hopkins University’s Whiting School of Engineering, will serve as the co-principal investigator and will co-direct the institute, along with Rollett. Additional partners on the institute include Vanderbilt University, University of Texas at San Antonio, University of Virginia, Case Western Reserve University, Johns Hopkins University Applied Physics Laboratory, Southwest Research Institute, and Pratt & Whitney.

Composites AM 2024

746 composites AM companies individually surveyed and studied. Core composites AM market generated over $785 million in 2023. Market expected to grow to $7.8 billion by 2033 at 25.8% CAGR. This new...

Edward Wakefield

Edward is a freelance writer and additive manufacturing enthusiast looking to make AM more accessible and understandable.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services


Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.