Medical AMProsthetics

Nanoscribe’s nano 3D printing used to produced better cochlear implants

Combining MEMS with intricate 3D structures to reduce hearing loss

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Based on Nanoscribe’s micro and nano 3D printing technology, scientists developed a 3D microscaffold cochlear implant for steroid elution. For the first time, scientists combined a highly precise, porous 3D printed steroid reservoir with a 2D MEMS-based electrode array to fabricate a novel cochlear implant. This implant is designed to reduce the damage of residual hearing against electrode insertion trauma.

According to the World Health Organization (WHO), over 5% of the world’s population – around 466 million people – suffer from hearing loss. Among some patients, severe hearing loss is due to damaged hair cells in the inner ear. In these cases, the auditory nerve can be stimulated directly with cochlear implants. To protect the residual hearing against electrode insertion trauma (EIT), an international team of bioengineers from the Bio-Microrobotics Laboratory of the Daegu Gyeongbuk Institute of Science and Technology (DGIST) in collaboration with the Ajou University and Microsystems Lab of the Swiss Federal Institute of Technology Lausanne (EPFL) developed a novel cochlear implant.

cochlear implant
A close up of the intricate nanoscale 3D printed structure.

They used Nanoscribe’s Photonic Professional systems to fabricate microstructure scaffolds that were assembled onto a cochlear electrode array. This cochlear implant has been successful in stimulating the auditory nerves. Moreover, it has been demonstrated with guinea pigs that the 3D printed micro-reservoirs release steroids locally and continuously, thus demonstrably protecting their residual hearing.

The researchers presented an innovative microscaffold cochlear electrode array: they fabricated a 2D flexible electrode array based on microelectromechanical system (MEMS) technology to be used for electrical stimulation of the auditory nerve. The MEMS-based electrode was assembled with several separate microscopic porous 3D structures that carry and release steroids to protect residual hearing.

cochlear implant
The actual implant in the ear canal.

The high-precision 3D scaffolds were fabricated by means of Two-Photon Polymerization and applying the Solution Set Medium Features to achieve porous structures with micrometer size. This versatile 3D printing approach enabled to tailor the microscaffolds with the required dimensions and geometry to coat a large surface area with steroids.

The versatility of 3D microfabrication enables the materialization of intricate but at the same time extraordinarily precise microscopic parts. These microcomponents can be designed with shapes and elements that meet the requirements in life sciences, e.g., cell scaffolds, microstents or microneedles. Moreover, the printing materials play a decisive role for the properties of the final 3D printing structures. With this in mind, Nanoscribe is reportedly exploring various new material compositions to develop printing materials that include biocompatible photoresins. These efforts in materials development are expected to soon release advances in resin properties to better meet the needs in life science research.

Composites AM 2024

746 composites AM companies individually surveyed and studied. Core composites AM market generated over $785 million in 2023. Market expected to grow to $7.8 billion by 2033 at 25.8% CAGR. This new...

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he co-founded London-based VoxelMatters. Today the company publishes the leading news and insights websites and, as well as VoxelMatters Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services


Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.