Making functional materials more functional with AM
In a report titled 'Accelerating research and technological development in the additive manufacturing of energy-related functional materials', led by Pitt MEMS Professor Paul Ohodnicki

Functional materials are important for many power applications, like semiconductors, electric motors, and batteries, although they are often expensive and energy-intensive to manufacture using traditional methods. As you can imagine, this is where additive manufacturing could ease this burden, thanks to the technology’s ability to rapidly produce on-demand, highly complex parts – using less energy and less material than traditional methods. However, the additive manufacturing of functional materials is still largely unexplored.
Paul Ohodnicki, associate professor of mechanical engineering and materials science at the University of Pittsburgh, recently led an accelerator study to advance the use of additive manufacturing for energy-related functional materials. The study, which outlines steps toward the future of electric power materials, was organized by the Minerals, Metals and Materials Society (TMS) on behalf of the US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy – Advanced Manufacturing Office.
“We wanted to identify areas where we could take intellectual leadership, specifically laying out how the field of functional materials can help move us toward decarbonization,” said Paul Ohodnicki. “This is an important area that is growing rapidly, but we’re still in the early stages of applying additive manufacturing to functional materials. Because it’s early and requires different materials, there are a lot of unique aspects that need to be considered.”

Another advantage of AM is that artificial intelligence and computational modeling can be used in conjunction with the technology to accelerate the discovery of new functional materials. As we already know, AM offers sustainability benefits, too.
In order to achieve these benefits, the report lays out several areas for further research, including gaining a better understanding of AM design for functional materials, the new processes, methods, and materials needed to adapt AM to functional materials, and methods for recycling and reusing AM feedstock materials.
Paul Ohodnicki served as study team chair of this accelerator report, with George Spanos, director of new initiatives, science, and engineering at TMS, serving as project leader. The project assembled experts in the field of additive manufacturing and functional materials from academia, industry, and national labs, including Markus Chmielus, assistant professor of mechanical engineering and materials science at Pitt, who served as an expert contributor. Together, the group has designed an action plan that lays out the steps researchers will broadly need to take to move the technology forward, with the goal of inspiring new projects and initiatives in the field.
“This report brings together key experts who collectively helped to shape a vision for AM opportunities, as well as the areas where work is needed most,” said Paul Ohodnicki. “This is an important area, and now is the right time to pull together the state of the art and work together to develop it for the future of the energy transition.”
The entire report can be found here.