3D Printing ProcessesAM ResearchProduct Launch

Japanese Researchers Create 3D-CMF Process for Optimal Surface Finish on FDM 3D Prints

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Waseda University researchers have developed a process to dramatically improve the quality of 3D printed resin products. The process combines greatly improved surface texture and higher structural rigidity with lower cost, less complexity, safer use of solvent chemicals and elimination of troublesome waste dust.

The Waseda researchers developed and tested a method called 3D Chemical Melting Finishing (3D-CMF), which uses a tool like a felt-tip pen to selectively apply solvent to particular parts of the printed piece which require smoothing.

3D-CMF conceptual illustration “a” shows printed surface with no smoothing; “b” is first step using the pen to reduce high spots; “c” shows the progress as high spots are further reduced and dissolved material fills in low spots; “d” shows how difference between high and low spots is reduced for much smoother surface.

The new 3D-CMF method has major advantages over previous methods: removing less material to create less waste and achieve more accurate shaping; and using less solvent for better safety and lower cost. In addition, pen tips can be changed to further increase surface shaping accuracy. These improvements promise to move 3D printing into a much more attractive commercial position, as a realistic possibility for in-home consumer use.

The device used to verify the change surface state of the 3D printed structure by 3D-CMF.

Kensuke Takagishi and Professor Shinjiro Umezu, both of the Waseda University Faculty of Science and Engineering, Department of Modern Mechanical Engineering, chose the Fused Deposition Modeling (FDM) type 3D printer, whose low cost makes it most suited for in-home use, and addressed the issue of surface “ribbing,” grooves left between layers of applied resin material. This research is published in Nature’s Scientific Reports.

One existing method for surface smoothing is polishing, or grinding down the high places to reduce the appearance of “ribs”. However, the polishing devices add complexity and cost to the printer, and capture and disposal of the generated dust add further complexity, making the whole machine impractical for household use.

Another existing method uses vaporized solvents to melt and smooth the surface of the printed piece. This method has the advantage of capturing some of the dissolved material in the bottom of the grooves, improving smoothness and structural integrity with less wasted resin; however complexity of the machine, indiscriminate dissolution of the entire surface (lack of precise control), and the handling of large amounts of flammable solvents are major issues.

The original article also includes data results of performance testing and photos of the devices used.


Polymer AM Market Opportunities and Trends

741 unique polymer AM companies individually surveyed and studied. Core polymer AM market generated $4.6 billion in 2021. Market expected to grow to over $34 billion by 2030 at 24.8% CAGR. This new...


3D Printing Media Network is the online trade media portal published by 3dpbm, a leading marketing and market research firm specializing in the AM industry. 3dpbm also publishes the 3D Printing Business Directory, the AM Focus eBook series and the 3dpbm Research AM Market Reports. 3D Printing Media Network was founded with the goal to provide the latest industry news, insights and opinions to a global audience of professionals and decision makers.
Back to top button

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services