Micro 3D printing

Horizon adds metal coating to micro-AM technology offering

The company now has the capability to add copper metal coatings to polymer micro-AM parts and other microstructures

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Horizon Microtechnologies has launched a suite of in-house processes – developed to work with a range of template materials and template shapes – that add material and functionality to a microstructure. The technologies are especially suited as a post-printing treatment for micro-AM derived templates, and now, in addition to providing coatings that add conductivity and environmental resistance, Horizon can add copper metal coatings to polymer micro-AM parts and other microstructures. Essentially, companies can produce parts with the functionality of copper but also exploit the design freedom, precision, and resolution achievable through micro-AM.

“Our initial focus is on copper coatings, as this opens up an array of application possibilities for companies wishing to add functionality to micro-AM templates. Copper coatings can offer significant benefits for microfabricated or micro-additive manufactured parts, but there are several challenges and problems associated with current coating solutions that Horizon has addressed to ensure the successful application of the copper. We have carefully optimized the coating process, materials, and deposition parameters, and have overcome these challenges to harness the full potential of copper coating which can now be applied reliably, cost-effectively, and speedily, making it viable for a whole range of applications,” said Andreas Frölich, CEO of Horizon.

The addition of copper coatings to micro-AM or other 3D microfabricated templates can offer numerous advantages, including, most importantly, improved electrical and thermal conductivity. However, when working with 3D polymer templates, existing copper coating technologies are challenged by issues like non-uniform deposition of the copper, adhesion of the copper to the substrate, low deposition rates, or achieving deposition at all.

“Any technique for deposition of copper coatings requires precise control over process parameters, for example, temperature, pressure, or flow rates, to achieve uniform and defect-free coatings. This can be particularly challenging when working with complex part geometries, and again is an area where Horizon has focused its efforts. One of the key reasons why companies seek to use micro-AM parts is because micro-AM opens up design freedom and allows the creation of complex geometries, and so any copper coating technology must be agnostic to complexity in order to be attractive for use with micro-AM parts. Ultimately customers come to Horizon looking for parts,” said Frölich.

Horizon adds metal coating to micro-AM technology offering. Including copper metal coatings for polymer micro-AM parts.

Horizon’s coatings are typically in the 1-2 micron thickness range, which is sufficient for many applications. Importantly, the company’s process can also coat internal channels and undercuts, to some degree. Currently, the channel’s aspect ratio is the limiting factor – rather than the absolute length.

For the first time, through Horizon’s technology, the functional advantages of copper can be married with the design flexibility of micro-AM. The technology is ideally suited to the very many applications where the use of bulk copper is not required and would be technically impossible or uneconomic.

“With our processes, industry can now access a reliable way to coat three-dimensional micro-AM and other microfabricated templates with copper. Copper coatings can significantly improve the surface properties of micro-fabricated parts by adding wear resistance, lubricity, and hardness. The most important use case for the coatings is when highly conductive surfaces are required. Again, of significant importance (and if designed well), our copper coating can be used not just to coat an entire micro-part, but to selectively coat features on a given template, creating several independent metal features for interconnects, vias, etc. Selective metallization has more constraints than uniform metallization, and so we will happily work with customers to ensure part design is optimized for the process. We look forward to working with interested parties to prove the effectiveness of our copper coating technology, and overcoming preconceptions concerning problems with alternative existing solutions,” concluded Frölich.

The key application areas for copper-coated micro-AM and microfabricated templates are those that require high precision, complex geometries, and advanced materials properties, such as high electrical conductivity. As such, opportunities exist in the production of microelectronic devices such as free-form printed circuit boards, interposers and interconnects; micro-sensors; miniaturized biomedical devices (such as implantable sensors); drug delivery systems; lab-on-a-chip systems, micro-reactors, and microfluidic sensors; and MEMS actuators and transducers.

Research
Polymer AM Market Opportunities and Trends

741 unique polymer AM companies individually surveyed and studied. Core polymer AM market generated $4.6 billion in 2021. Market expected to grow to over $34 billion by 2030 at 24.8% CAGR. This new...

Edward Wakefield

Edward is a freelance writer and additive manufacturing enthusiast looking to make AM more accessible and understandable.

Related Articles

Back to top button

We use cookies to give you the best online experience and for ads personalisation. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services