3D Printing EventsAM ResearchAM SoftwareProduct LaunchVolumetric 3D Printing

Fraunhofer‘s Lighthouse Project “Go Beyond 4.0“ Software Efficiently Determines 3D Printability

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Fraunhofer‘s lighthouse project Go Beyond 4.0 Digital printing and laser processes have so far hardly been used in mass production in order to individualize products. With this combination, serial products can be designed individually and cost-effectively, right down to the unique item. The new Fraunhofer lighthouse project “Go Beyond 4.0” is taking up this challenge

The individualized mass production up to the individual item is a promise of the future delivered by Industrie 4.0. It can only be implemented if there are suitable test methods for the feasibility of individual designs. At the Hannover Messe 2017 Fraunhofer researchers presented a simulation solution that automatically determines whether the customer‘s desired design can be realized.

The Fraunhofer Institute for Computer Graphics Research IGD in Darmstadt has developed simulation software that quickly tests the feasibility of individual design wishes. This offers customers and manufacturers new possibilities for individualized mass production.

“We create a smooth transition between design and simulation. How to quickly determine whether an individual design can be implemented is frequently an unresolved problem in industry today. In most cases, CAD data only describes the outer surface and does not contain the volumetric information required for simulations. Generating these afterwards is highly prone to errors, usually requires manual reworking and costs the industry a lot of money.” Christian Altenhofen from the department “Interactive Engineering Technologies” at Fraunhofer IGD.

The software of the Fraunhofer researchers from Hesse enables customers and manufacturers to automatically generate the required simulation themselves. This makes it easy to determine whether design proposals created on the computer can be implemented in reality. If this is not the case, the technology suggests how the design of the product can be improved.

“The customer still has a lot of possibilities for individual design,” says Altenhofen.

Simulating the inner structure of an object

The algorithms use the mathematical concept of “subdivision volumes”. Based on this, the researchers use the finite element method to derive physically-based simulation models. Specifically, this means calculating the internal stresses of the model, based on boundary conditions such as gravity or forces induced by the weight of the object. Depending on the distribution and absolute values of the stresses, it is possible to judge whether or not an object is stable. “Subdivision volumes create a consistent virtual model of the inner structure of the object,” the Fraunhofer expert says in describing the technology. This means that the approach goes beyond the traditional CAD representations as they only describe surfaces of three-dimensional objects and do not allow any conclusions to be drawn about the interior.

“Our approach directly includes the volumetric representation together with the surface information that defines the actual design. This means that customers and manufacturers have access to the necessary information for the simulation during the entire design process,” Altenhofen says.

For the Hannover Messe 2017, the researchers have developed a prototype of their simulation solution, which conveys the idea for possible applications or possible future developments: They manufacture individual plastic holders for espresso cups. Via an interactive use interface, the visitor can design his own cup holder. If the idea cannot be realized or does not withstand the later physical stresses, the visitor receives instructions which parameters he can change to prevent this.

“Additive manufacturing is a powerful example of how our technology can be applied. In principle, however, our approach is applicable to many different manufacturing processes and different materials,” says Altenhofen.

Composites AM 2024

746 composites AM companies individually surveyed and studied. Core composites AM market generated over $785 million in 2023. Market expected to grow to $7.8 billion by 2033 at 25.8% CAGR. This new...


VoxelMatters is the online trade media portal published by 3dpbm, a leading marketing and market research firm specializing in the AM industry. 3dpbm also publishes the 3D Printing Business Directory, the AM Focus eBook series and the 3dpbm Research AM Market Reports. 3D Printing Media Network was founded with the goal to provide the latest industry news, insights and opinions to a global audience of professionals and decision makers.

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services


Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.