Desktop Health adds PhonoGraft biofabrication platform

Targeting regeneration of tympanic membranes

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Desktop Health has added the PhonoGraft platform to its technology portfolio, with the potential to support the body’s functional and morphological regeneration of the tympanic membrane. This biofabrication technology may also offer a promising pathway for soft tissue regeneration for a wide range of healthcare applications.

The PhonoGraft technology was initially developed by researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and Mass Eye and Ear in Boston (Mass Eye and Ear is a member of Mass General Brigham). Harvard’s Office of Technology Development has granted Desktop Metal an exclusive license to commercialize the platform.

Boston’s biofabrication hub

By establishing Desktop Health, Desktop Metal is successfully leveraging synergies between the nearby Harvard institutes, which are conducting some of the most advanced research in biofabrication, and the bioprinting technologies available after the acquisition of EnvisionTEC, including the 3D Bioplotter, one of the most used bioprinters in Universities around the world. In its diversification strategy, Desktop Health will be facing off with CELLINK, the company originating in Sweden that also conveniently opened a key HQ in the Boston area.

Desktop Health adds PhonoGraft biofabrication platform

“We believe that this platform may one day offer a groundbreaking solution to the millions of patients impacted by tympanic membrane perforation (TMP),” said Michael Jafar, President and CEO of Desktop Health. “PhonoGraft material technology, coupled with our leading biofabrication capabilities, has tremendous potential across a wide range of healthcare applications in soft tissue – from cardiovascular and neuronal grafts to plastic surgery. Today’s announcement marks the beginning of our journey to advance personalized medicine.”

The PhonoGraft technology is being studied for possible use in an implantable device for repairing damaged eardrums, with a programmable biodegradable 3D printed graft that has the potential to be minimally invasive and offer patients decreased procedure times and improved healing and hearing outcomes.

“I’m delighted for the members of my lab at Harvard and our collaborators at Mass Eye and Ear who jointly developed this innovative technology, and who successfully applied their entrepreneurial drive to demonstrate its potential. In addition to TMP relief, this advanced graft technology could pave the way for a multitude of healthcare products in the fields of cardiac, vascular, and plastic surgery,” said Jennifer Lewis, ScD, who is a Core Faculty member at the Wyss Institute, a Hansjorg Wyss Professor of Biologically Inspired Engineering, and Jianming Yu Professor of Arts and Sciences at Harvard SEAS.

3D printing biomimicry

The concept for the PhonoGraft device arose after the 2013 Boston Marathon bombings when many individuals sustained eardrum perforations due to the blast injury. Nicole Black, PhD, then a doctoral student in Lewis’ Harvard lab, recognized an opportunity to explore ways in which 3D printing might be used to improve outcomes following eardrum reconstruction. Lewis and her research group, in collaboration with ear surgeons Dr. Aaron Remenschneider and Dr. Elliott Kozin from Mass Eye and Ear, assembled a multidisciplinary team of material scientists and otolaryngologists.

Desktop Health adds PhonoGraft biofabrication platform

“One of the most prevalent injuries of the Boston Marathon bombing was perforated eardrums,” said Dr. Remenschneider. “This is also common in military personnel after blast injury and in children and adults with ear infections. Surgical repair of the eardrum is, unfortunately, necessary for many patients to restore hearing and create a ‘safe’ ear.”

Six years of research and development, with an infusion of focused translational funding from the Wyss Institute, led to the creation and preclinical de-risking of the PhonoGraft material and device platform. Black became an entrepreneurial champion for the technology; she and several colleagues founded a startup, Beacon Bio, to advance the technology into commercial development. Beacon Bio has now been acquired by Desktop Metal.

Rebuilding the ear

The PhonoGraft device is a biomimetic graft that has the potential to enable high-quality and long-lasting eardrum reconstruction. Partnering with surgeons to develop the technology and understand critical features, such as the acoustic and mechanical properties of the graft material, has been important in its development, Black said.

Desktop Health adds PhonoGraft biofabrication platform

“This device, which is manufactured from a biodegradable elastomer in the form of customizable biomimetic circular and radial scaffolds, is intended to function like the native eardrum. Preliminary bench studies show that the PhonoGraft device not only closed the eardrum perforation; it supported the body’s regeneration of the complex eardrum structure,” said Black, who has joined Desktop Health as the Vice President of Biomaterials and Innovation. “Such graft architectures benefit from the use of 3D printing and permit the eardrum to transmit both low- and high-frequency sound waves.”

The PhonoGraft platform has been validated in preclinical studies in animal models. These studies have shown that as the eardrum heals, native cells and blood vessels grow into the biocompatible PhonoGraft material. Since the graft material is biodegradable, it is expected to be replaced by native tissue over time.

“This technology has potential to ‘intelligently’ support the regeneration of soft tissues in other areas of the body,” said Black.

PhonoGraft technology is in advanced-stage research and development, and currently not available for sale anywhere in the world. Black and her team at Desktop Health intend to conduct additional preclinical studies and pursue FDA review.

Composites AM 2024

746 composites AM companies individually surveyed and studied. Core composites AM market generated over $785 million in 2023. Market expected to grow to $7.8 billion by 2033 at 25.8% CAGR. This new...

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he co-founded London-based VoxelMatters. Today the company publishes the leading news and insights websites and, as well as VoxelMatters Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services


Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.