Consumer ProductsIndustrial Additive ManufacturingRapid Prototyping

Cree uses voxeljet 3D printer to cut time and costs on development of new LED lights

VX 1000 system used to create complex PMMA patterns in under six hours

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

The newest Cree LED lights were produced using investment casting models additively manufactured on a VX1000 3D printing system from voxeljet. Cree Inc. is one of the world’s leading manufacturers of LED lights. The company using a VX1000 3D printing system from voxeljet, in order to make prototype construction significantly faster and more cost-effective. Casting for this application was carried out by the Aristo Cast investment foundry.

Whether desk lamp, advertising display or street lamp: Light light-emitting diodes (LEDs), the successors of the light bulb, have long been an integral part of life. And are still on the advance. While sales of LED lamps in Europe reached one billion euros in 2011, it is forecast to rise to 14 billion euros by 2020.

This boom also motivated Cree Inc.. The US company from North Carolina is a pioneer in LED lighting: in 1989, it introduced a blue LED to the market and today enjoys revenues of over 1.6 billion US dollars. Today Cree’s R&D Department pursues the objective to further optimize LED technology. This applies not only to the diodes themselves but also to the grooved heat sinks which can be found on the back of LED circuit boards for high-performance LEDs – as can be seen in modern street lights. The heat sinks are made of heat-conducting materials, such as aluminum or copper, which emit the operating heat from the diodes to the ambient air ensuring a low operating temperature and longer lamp life.

In order for the heat sinks to be light, efficient and visually appealing at the same time, Creed’s R&D department is testing this with prototypes produced by Aristo Cast, an investment foundry from Almont in the US state of Michigan. The production of molds for the investment casting of heat sinks is becoming more and more uneconomical due to increasing geometric complexity requirements. Hours of manual work and expensive injection molding tools and wax presses are required to build wax patterns. In the past, it was not uncommon for it to take weeks before the first parts were delivered. In addition, not all geometries could be realized, as the classic mold construction restricts freedom of design.

Aristo-Cast, therefore, established an alternative: the VX1000 from voxeljet. This is a 3.5-tonne 3D printing system with a 1,000 x 600 x 500 millimeter installation space and an effective building volume of 300 liters.

The conventional production process would have taken weeks for this sizePaul Leonard, Vice-President of Aristo Cast Inc.

Since the additive process only requires CAD data, complex models for innovative cooling elements can be produced digitally without the need for tools. This CAD data printed using PMMA is subsequently processed by Aristo Cast directly for cast parts, which significantly optimizes Cree’s development and makes new designs possible which were previously difficult to build.

The specific advantage of 3D-printed heat sinks lies in the efficient design of the cooling elements which often involves a complex geometry to cool the LEDs as well as possible. The more complex the cooling element, the more durable and efficient the LED – ideal conditions for 3D printing. With the VX1000 printing system from voxeljet, a mold can be produced in just a few hours. Aristo-Cast simply feeds the 3D printing system from voxeljet with a CAD file representing the prototype’s digital construction plan. A few steps later and the printing of the positive model begins.

Within the 3D-printing system, a so-called recoater spreads a 150-micrometer thick layer of the plastic polymethyl methacrylate (PMMA) on the building platform. In the next step, a printhead applies the binder only to sections where the prototype is supposed to be built. 100% of the non-printed powder can be recycled and reused. Subsequently, the building platform is lowered by a one-layer thickness and the process repeats. The vertical building progress of this layering is approx. 18 millimeters per hour. That sounds comfortable but is much faster than classic mold construction which often takes several weeks for complex geometries.

The new Cree LED lights were produced using 3D printed investment casting on a voxeljet VX1000 3D printing system

When the printing is complete, Aristo Cast covers the positive model with wax to seal the surfaces. The model is subsequently coated with several ceramic layers. The PMMA model is then burned out using an autoclave. At a temperature of 700 °C the PMMA powder burns out with nearly no residual ash. What remains is the finished, ceramic-positive mold for the precision casting of the prototype.

The printing of the 43 x 43 x 11-centimeter model weighing 1,900 grams only takes around six hours. Cree Inc. uses these time advantages to manufacture prototypes of cooling elements more time efficiently. Through the nesting, the stacking of the components in the job box, several models can be produced at the same time. Therefore, eight of these models can emerge from just one job box in only 24 hours. “The conventional production process would have taken weeks for this size” explains Paul Leonard, Vice-President of Aristo Cast Inc. “For this component, Binder jetting gives us the possibility of completing the model in the shortest time and with substantial cost savings” so Leonard.

A further time advantage lies in the saving of ceramic layers. Through the negative thermal expansion coefficients of the PMMA powder, the models collapse when the ceramic shell is being burned. Therefore, fewer ceramic layers can be used to build the model leading to material and time savings.

Direct metal printing is unsuitable partly due to the size and partly due to the enormous costs involved

Thanks to the 600 dpi resolution of the VX1000, Aristo Cast is able to realize filigree geometries. Therefore, the units from Cree can be easily constructed with wall thicknesses of 2.5 millimeters. Even undercuts, design elements protruding freely from the casting, are possible. The objective of the designers of Cree Inc. is to remove as many limits as possible. Designers from all sectors can benefit from 3D-printing technology. As an example, they can develop new geometries for engine parts and lightweight doors.  Using these modern additive manufacturing technologies, 17 days after the order, Cree was able to complete five finished cast prototypes. If the project planning was carried out using conventional product development, it would’ve taken up to 6 weeks for the first prototype to be completed.

With regard to other additive production methods such as direct metal printing or wax models, voxeljet’s Binder Jetting process shows both economies of scale and cost advantages. “Using conventional mold construction, we were only able to construct cooling elements in just one piece. Direct metal printing is unsuitable partly due to the size and partly due to the enormous costs involved” explains Leonard. “In this case, a printed PMMA model was the optimal solution”. David Tait, Managing Director of voxeljet America Inc. explains: “The smaller the batch size, the greater the cost advantage of voxeljet technology. Especially for complex geometries, 3D printing is the most economical alternative, even for batch sizes of several hundred, although it cannot yet replace classic mold making for large series”.

The smaller the batch size, the greater the cost advantage of using voxeljet technology. David Tait, Managing Director of voxeljet America Inc.

Composites AM 2024

746 composites AM companies individually surveyed and studied. Core composites AM market generated over $785 million in 2023. Market expected to grow to $7.8 billion by 2033 at 25.8% CAGR. This new...

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he co-founded London-based VoxelMatters. Today the company publishes the leading news and insights websites and, as well as VoxelMatters Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services


Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.