3D Printing Processes3D Printing Service ProvidersAerospace AM

Complex Parts Manufactured In Space by MIS Deliver New Capabilities

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

In 2014, Made In Space (MIS) took the initial step in achieving this with the first manufacturing of an object in space. In partnership with NASA, MIS deployed a Zero-Gravity Printer to the International Space Station (ISS), proving that objects can be quickly designed on Earth and manufactured in space. Last year, MIS built on this initial success with the deployment of the first commercially available manufacturing device on orbit, the Additive Manufacturing Facility (AMF).

MIS continues to demonstrate the potential of 3D printing in space, using different source materials to print stronger and more flexible parts. One promising area of exploration for 3D printing technology is the medical field. Through an agreement with the Center for the Advancement of Science in Space (CASIS), which manages the National Lab aboard the ISS, Made In Space seeks to identify, evaluate and manifest research opportunities capable of benefiting life on Earth through additive manufacturing in microgravity. This past February, MIS identified one such opportunity, applying its foundational 3D printing capabilities by using the AMF to rapidly prototype two medical devices.

The first medical print was a custom finger-splint design for 3D4MD, a company which uses 3D printing technology to bring low-cost healthcare supplies to remote parts of the world. The finger-splint custom design was made by scanning the fingers of test subjects using an algorithm and software created by the customer. MIS engineers then iteratively improved the design, and were able to print a new, improved part within a day.

Fabricating on demand is a more efficient option to inventory storage and management. It’s not always feasible to take a toolbox or surgical kit stocked for every medical contingency on space missions because of payload constraints. Not only is space limited on rockets, but every kilogram of a payload costs several thousands of dollars to launch into orbit. Printing on demand also provides the ability to customize parts, which is especially valuable when creating medical devices because no two people are exactly the same.

The second MIS medical print was a ventilator regulator valve, printed as four separate parts and successfully assembled and tested by Astronaut Peggy Whitson. Dr. Naoyuki Ishikita, chief pediatrician at Shibukawa Medical Center, designed the ventilator, perfecting the design over two years. MIS engineers adapted the design for in-space manufacturing and also modified Dr. Ishikita’s design by adding a pin tension spring which improved the valve’s opening and closing.

https://youtu.be/I8uIswih2WQ

Research
Consumer Products AM 2024

This new market study from VoxelMatters provides an in-depth analysis and forecast of polymer and metal AM in the consumer products industry across the three core segments of the additive manufactu...

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • PHPSESSID
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Save
Accept all Services

Newsletter

Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.