BiomaterialsBioprintingMedical AMProsthetics

CollPlant advances 3D bioprinted regenerative breast implants

By initiating a study in large animals (porcine) for its breast implant program

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

CollPlant, a regenerative and aesthetics medicine company developing innovative technologies and products for tissue regeneration and organ manufacturing, has initiated a study in large animals for its 3D bioprinted regenerative breast implant program – addressing the reported $2.8 billion global breast implant market.

“This study is a quantum leap in the development of 3D bioprinted regenerative breast implants,” said Yehiel Tal, CEO of CollPlant. “We believe that our regenerative breast implants will address safety challenges associated with silicone implants while also providing a more natural looking and feeling aesthetic result. Immediately following the conclusion of this study, we are planning to launch a second study with human-size implants that mimic commercial products. These studies will advance us to the significant stage of human clinical trials.”

CollPlant’s bioprinted regenerative implants aim to overcome the challenges of existing breast procedures that use silicone implants or autologous fat transfer. According to the U.S. Food and Drug Administration, approximately 350,000 people have reported adverse events involving breast implants between 2009 and 2019. Reports range from autoimmune symptoms to breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). CollPlant’s regenerative breast implants are comprised of the company’s proprietary plant-derived rhCollagen, a well-suited building block for regenerative medicine implants attributed to better bio-functionality, superior homogeneity, and improved safety.

CollPlant advances 3D bioprinted regenerative breast implants. By initiating a study in large animals for its breast implant program.
Breast implants. Source: Rice University

The printed implant is intended to degrade over time while promoting natural tissue regeneration and integration with host tissue. 3D bioprinting technology enables scalable production of highly precise and repeatable constructs, which can be customized to the individual anatomy of patients. The implants are designed to withstand physiological loads and to provide what CollPlant believes is a safer, more natural, and long-lasting alternative to current breast reconstruction and augmentation procedures.

To date, CollPlant has successfully produced prototypes of 3D bioprinted implants designed to regenerate breast tissue and has evaluated these in a series of preclinical studies. The company is now approaching an important milestone with the launch of a large animal study that involves the implantation of reduced-size 3D bioprinted implants in a clinically relevant porcine animal model. The study, which is planned to be concluded within six months, will evaluate adipose tissue regeneration, tissue integration, vascularization of the implant, implant degradation rate, and host tissue response to the implant. The study will also include screening of compositions and optimization of the surgical procedure, which will serve as the basis for the design of a pivotal large study with human-size implants.

In the product development process, CollPlant uses computational modeling tools that enable an optimal design of the implant in terms of geometry, materials, physical properties, and biological environment. The modeling takes into consideration the internal anatomy of the breast tissue and the behavior of an implant, post-implantation. The implant testing is rigorous and includes static and dynamic loading in order to mimic breast tissue behavior under different conditions and comply with the most stringent safety requirements.

Composites AM 2024

746 composites AM companies individually surveyed and studied. Core composites AM market generated over $785 million in 2023. Market expected to grow to $7.8 billion by 2033 at 25.8% CAGR. This new...

Edward Wakefield

Edward is a freelance writer and additive manufacturing enthusiast looking to make AM more accessible and understandable.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services


Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.