Orthopedic Implants
The medical sector is today the largest adopters of 3D printing technologies for the production of consumer-targeted items, including prosthetics and implants. 3D printed orthopedic implants – especially knee and hip, but also spinal and CMF – are among the clearest example of digitally, additively mass produced final parts. And they are also among the first products that could be fully mass customized.
The history of additive manufacturing for orthopedic implants dates back over a decade, with earliest estimates for patient-specific implants being manufactured via AM around 2007. In 2010, an early adopter of electron beam based powder bed fusion technology from Arcam received one the very first FDA approvals for an orthopedic implant made via additive manufacturing.
Since these and other pivotal early achievements, the orthopedic implant industry has been somewhat quietly revolutionized by additive manufacturing. Over the past two years, the penetration rate for additive production of industry standard sized implants has been expanding rapidly towards a future where a majority of implants are produced additively. This expansion is happening in numerous implant areas including spinal, hip, knee, and other types of implants (where annual procedures are also growing).
Case studies for more standardized implants made additively have begun to further fuel the drive towards enabling more widespread use of true patient-specific devices. In this area, additive manufacturing represents the only true path to economic viability and production feasibility for implants designed and shaped to a specific patient with unique trauma, degenerative disease, or birth defects. Indeed, additive manufacturing will be a key piece of the holy grail of orthopedic (and other medical) care, in which physical solutions are tailored to the exact needs of an individual patient.
As a global opportunity within the broader AM market, orthopedic implants is growing to expand into new areas. The low hanging fruit that has powered the industry thus far remains in standardized implants fabricated in widely accepted alloys such as titanium. True patient-specific devices using these technologies and materials appear to be an inevitable growth extension where lower volumes and higher potential values per device exist.
Meanwhile, new developments in the additive fabrication of more advanced implants, including biodegradable and lightweight reinforced polymers, present cutting edge, green field growth scenarios in an already booming ‘additive orthopedic’ market.