CompositesDefenseIndustrial Additive ManufacturingLFAMMaterials

Boeing 3D prints large-scale composite AM cure tool

In a collaboration with Navy ManTech, NAVAIR AERMIP and Thermwood

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Thermwood was a key development partner in a Navy ManTech-funded program issued to Boeing Research and Technology to produce a large-scale composite AM cure tool. The ManTech program was managed by Advanced Technology International (ATI) for the Office of Naval Research (ORN) with funding provided from the Naval Air Systems Command (NAVAIR) Aircraft Equipment Reliability & Maintainability Improvement Program (AERMIP).

Fleet Readiness Center East (FRCE) was a key technical contributor to the development of low-cost composite cure tooling. Thermwood’s Large Scale Additive Manufacturing (LSAM) machine was selected as the Large Format Additive Manufacturing (LFAM) machine to conduct the technology development.

Several unique equipment features of the LSAM machine drove the selection. The high-temperature autoclave cure tooling operating environment of 355° Fahrenheit and 85 psi provided a challenge for polymer-based tool material. Additional composite cure tooling requirements for vacuum integrity and dimensional stability were validated during the development. Neil Graf Office of Naval Research noted: “Composite manufacturing is a strategic technology for future platforms and development of more cost-effective tooling solutions would significantly benefit the implementation.”

composite AM cure tool

FRCE provided a high contour mold line surface to Boeing for generating the composite cure tool. The mold line shape was very aggressive and would stretch the large format additive manufacturing technology processes capability. The spherically shaped portion of the mold line offered the largest challenge, as the unsupported 3D printed angle limitation of approximately 45 degrees provides an interesting obstacle to overcome for the spherical mold line section of the tool. Boeing rotated the 3D print plane 35 degrees to avoid encroachment of the build angle limitation.

The new and innovative build plane approach eliminated the requirement for temporary support material for the aggressive mold line shape. The new build angle would test the LSAM machine limits in an area never explored previously. The TechmerPM PESU CF 1810 high-temperature print material was used for the composite cure tool. High-temperature materials present additional challenges during print over low-temperature materials such as ABS CF. Two interim support features were added to compensate for the center of gravity shift of the print.

composite AM cure tool

The LSAM machine performed flawlessly during the composite cure tool print. The tool was printed in 7 hours and 26 minutes using 610 lb of material and machined in 53 hours using the LSAM gantry router machine. The tool datum features, and removal of interim members, were machined before removal from the beadboard. The Thermwood LSAM machine offers the ability to machine and 3D print on a single platform. The composite cure tool mold line part surface achieved at surface profile tolerance of .020” (+/- .010”).

The Boeing Research and Technology (BR&T) laboratory performed functional testing on the LFAM composite cure tool to ensure vacuum integrity and dimensional stability requirements were reached. The LFAM tool performed as expected and achieved all requirements. Several composite parts were fabricated from the tools. The tool’s durability was assessed during the multiple autoclave cure cycles and fabricated composite parts. The tool maintained dimensional stability and vacuum integrity throughout the functional testing and composite part manufacturing.

composite AM cure tool

The composite cure tool was printed and NC machined on Thermwood’s Large Scale Additive Manufacturing (LSAM) 1020 machine. The LFAM technology cost savings was estimated at 50% compared to traditional tool fabrication methods, and reduced tool fabrication lead-time by 65%. The cost savings and tool fabrication cycle time reduction could provide enormous benefits to any organization performing low volume or custom composite part fabrication and repair.

Tool Nondestructive Inspection (NDI) was performed on the composite parts fabricated on LSAM tools. The NDI results did not indicate any porosity. Due to the complex shape of the composite demonstration part, several NDI processes were employed. X-ray and C-Scan results did not reveal any delaminations or defects. The program benefited from a cooperative effort among several contributors to achieve success. The partnership between industrial technology leaders, Boeing and Thermwood coupled with the Office of Naval Research’s drive to transition technology, led to the successful program.

“Collaborations such as this help expand the scope of capabilities of emerging large scale additive technology by addressing real-world challenges that would be difficult for any single entity to define and address by itself. We look forward to new challenges moving forward”, said Thermwood CEO, Ken Susnjara. Additional development is key to expand LFAM composite cure tooling implementation. Boeing Associate Technical Fellow Michael Matlack commented “The program provided significant results in validating additive manufacturing as a viable method of producing lower-cost, capable tooling with substantial time savings over traditional methods.

Consumer Products AM 2024

This new market study from VoxelMatters provides an in-depth analysis and forecast of polymer and metal AM in the consumer products industry across the three core segments of the additive manufactu...

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services


Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.