AM for EnergyIndustrial Additive Manufacturing

3DCeram participates in HyP3D project for hydrogen production

The company formulated specialized slurries for SLA 3D printing utilizing commercial YSZ powders

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

The European HyP3D project has emerged as a trailblazing initiative set to redefine the landscape of hydrogen production. Leveraging cutting-edge YSZ ceramic 3D printing manufacturing techniques by 3DCeram, the HyP3D project aims to showcase the viability of a disruptive high-pressure Solid Oxide Electrolysis Cell (SOEC) technology, promising efficiency and sustainability.

At the core of the HyP3D project lies the ambitious goal of delivering an ultra-compact, high-pressure standalone SOEC stack capable of converting electricity into compressed hydrogen. Unlike conventional methods, the HyP3D aims to develop a technology that harnesses the power of 3D printed SOEC cells with a substantial active area of 70 cm2, embedded functionalities, and the capacity to achieve hydrogen production at remarkably high current densities exceeding 0.90A/cm2 (~1.3V) under conditions of 850oC and 5+ bar pressure.

3DCeram participates in the HyP3D Project for hydrogen production by formulating specialized YSZ slurries for SLA 3D printing

Of significant note, the manufacturing breakthrough achieved by HyP3D presents a paradigm shift from traditional ceramics SOEC processing. The outcome is the creation of ultra-high power density SOEC stacks, boasting a power output of 2.14 kW within a compact volume of 630 cm3. This achievement will translate to a threefold increase in specific power per unit volume (3.4 kW/L) and a fourfold rise in specific power per unit mass (1.10 kW/kg), outstripping existing benchmarks (State of Art).

One of the pivotal collaborators in the HyP3D project is H2B2, an organization specializing in all aspects of hydrogen production systems. Armed with unparalleled expertise in energy efficiency and cost reduction strategies, H2B2’s involvement is poised to elevate the project’s success. Furthermore, H2B2’s ownership of the manufacturing pilot line amplifies their contribution, streamlining the production of HyP3D cells.

3DCeram participates in the HyP3D Project for hydrogen production by formulating specialized YSZ slurries for SLA 3D printing

On 3DCeram’s front, the HyP3D project’s work and methodology entail an intricate optimization process spanning printable feedstock, 3D printing parameters, and thermal treatments. By formulating specialized slurries for SLA 3D printing utilizing commercial YSZ powders, the teams are delving into the rheological behavior and printing tests. The innovation extends to designing optimal procedures, culminating in the production of complex-shaped parts mirroring the final cell dimensions.

3DCeram participates in the HyP3D Project for hydrogen production by formulating specialized YSZ slurries for SLA 3D printing To successfully carry out this project, 3DCeram will conduct this work using the C1000 Flexmatic, the latest semi-automatic production line. The printer features a 320*320 mm build platform that aligns with the project’s industrial ambitions. Moreover, the industrialization possibilities offered by the C1000 FLEXMATIC are essential for the successful completion of the project.

HyP3D’s vision doesn’t stop at materializing dense, mechanically robust components. Collaborators 3DCeram and IREC are focused on formulating optimal printing strategies, ensuring reliability and maximizing production yield. The project aligns with the broader objectives of advancing the hydrogen economy, reducing time-to-market significantly, slashing raw material consumption by 76%, and minimizing the initial investment by 42% compared to conventional manufacturing processes.

With the HyP3D initiative, the energy sector witnesses a convergence of 3D printing prowess and hydrogen innovation, propelling the world toward a more sustainable energy future.


Composites AM 2024

746 composites AM companies individually surveyed and studied. Core composites AM market generated over $785 million in 2023. Market expected to grow to $7.8 billion by 2033 at 25.8% CAGR. This new...

Davide Sher

Since 2002, Davide has built up extensive experience as a technology journalist, market analyst and consultant for the additive manufacturing industry. Born in Milan, Italy, he spent 12 years in the United States, where he completed his studies at SUNY USB. As a journalist covering the tech and videogame industry for over 10 years, he began covering the AM industry in 2013, first as an international journalist and subsequently as a market analyst, focusing on the additive manufacturing industry and relative vertical markets. In 2016 he co-founded London-based VoxelMatters. Today the company publishes the leading news and insights websites and, as well as VoxelMatters Directory, the largest global directory of companies in the additive manufacturing industry.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services


Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.