BioprintingMedical AM

3D bioprinted Biomesh minimizes hernia repair complications

Stay up to date with everything that is happening in the wonderful world of AM via our LinkedIn community.

Researchers at the Baylor College of Medicine used a 3D bioprinter to fabricate a Biomesh using a polymer called phosphate cross-linked poly (vinyl alcohol) polymer (X-PVA) for an innovative new treatment of hernias. The complete study was published in Advanced Materials.

The hernia is one of the most common soft tissue injuries, which forms when intra-abdominal content, such as a loop of the intestine, squeezes through weak, defective, or injured areas of the abdominal wall. The condition may develop serious complications, therefore hernia repair may be recommended. Repair consists of surgically implanting a prosthetic mesh to support and reinforce the damaged abdominal wall and facilitate the healing process. However, currently used mesh implants are associated with potentially adverse post-surgical complications.

Through thorough experimentation, the researchers optimized the mechanical properties so the mesh would withstand maximal abdominal pressure repeatedly without any deterioration of its mechanical strength for several months. They also showed that their Biomesh did not degrade or reduce its elastic properties over time and was not toxic to human cells.

“Although hernia mesh implants are mechanically strong and support abdominal tissue, making the patient feel comfortable initially, it is a common problem that about three days after surgery the implant can drive inflammation that in two to three weeks will affect organs nearby,” said Dr. Crystal Shin, assistant professor of surgery at Baylor College of Medicine and lead author of this study looking to find a solution to postsurgical hernia complications.”To address these complications, we developed a non-pharmacological approach by designing a novel mesh that, in addition to providing mechanical support to the injury site, also acts as an inflammation-modulating system. A major innovation to our design is the development of a Biomesh that can reduce inflammation and, as a result, minimize tissue adhesion to the mesh that leads to pain and failure of the surgery”.

Mesh implants mostly fail because they promote the adhesion of the intestine, liver, or other visceral organs to the mesh. As the adhesions grow, the mesh shrinks and hardens, potentially leading to chronic pain, bowel obstruction, bleeding, and poor quality of life. Some patients may require a second surgery to repair the unsuccessful first. “Inflammation is also a serious concern” said Dr. Ghanashyam Acharya, associate professor of surgery at Baylor. “Currently, inflammation is controlled with medication or anti-inflammatory drugs, but these drugs also disturb the healing process because they block the migration of immune cells to the injury site”.

Inflammatory mediators called cytokines to appear where the mesh is implanted a few days after the surgery. Some of the main cytokines in the implant, IL1-β, IL6, and TNF-α, have a positive surface charge due to the presence of the amino acids lysine and arginine.

“We hypothesized that Biomesh with a negative surface charge would capture the positively charged cytokines, as opposite electrical charges are attracted to each other” Acharya said. “We expected that trapping the cytokines in the mesh would reduce their inflammatory effect and improve hernia repair and the healing process”.

3D bioprinted biomesh minimizes hernia repair complications

Shin, Acharya, and their colleagues have confirmed in the lab that this Biomesh can capture positively charged cytokines. Encouraged by these results, the researchers tested their Biomesh in a rat model of hernia repair, comparing it with a type of mesh extensively used clinically for surgical hernia repair.

The newly designed Biomesh effectively minimized postsurgical complications of hernia repair in an animal model. The researchers examined the Biomesh for four weeks after it was implanted, they found that it had captured about three times the amount of cytokines captured by the commonly used mesh. Cytokines are short-lived in the body. As they degrade, they enable the mesh to capture more cytokines.

“This Biomesh is unique and designed to improve outcomes and reduce acute and long-term complications and symptoms associated with hernia repair. With more than 400,000 hernia repair surgeries conducted every year in the U.S., the new Biomesh would fulfill a major unmet need,” Shin said. “There is no such multifunctional composite surgical mesh available, and the development of a broadly applicable Biomesh would be a major advancement in the surgical repair of hernia and other soft tissue defects. We are conducting further preclinical studies before our approach can be translated into the clinic. Fabricating the Biomesh is highly reproducible, scalable, and modifiable”.

Importantly, no visceral tissues had adhered to the new Biomesh, while the level of tissue adhesion was extreme in the case of the commonly used mesh. These results confirmed that this Biomesh is effective at reducing the effects of the inflammatory response and in preventing visceral adhesions. In addition, the new mesh did not hinder abdominal wall healing after surgical hernia repair in animal models.

“This concept of controlling inflammation through the physicochemical properties of the materials is new. The mesh was originally designed for mechanical strength. We asked ourselves, can we create a new kind of mesh by making use of the physical and chemical properties of materials?” said Acharya. “In the 1950s, Dr. Francis C. Usher at Baylor’s Department of Surgery developed the first polypropylene mesh for hernia repair. We have developed a next-generation mesh that not only provides mechanical support but also plays a physiological role in reducing the inflammatory response that causes significant clinical problems”.

Composites AM 2024

746 composites AM companies individually surveyed and studied. Core composites AM market generated over $785 million in 2023. Market expected to grow to $7.8 billion by 2033 at 25.8% CAGR. This new...

Andrea Gambini

Andrea has always loved reading and writing. He started working in an editorial office as a sports journalist in 2008, then the passion for journalism and for the world of communication in general, allowed him to greatly expand his interests, leading to several years of collaborations with several popular online newspapers. Andrea then approached 3D printing, impressed by the great potential of this new technology, which day after the day pushed him to learn more and more about what he considers a real revolution that will soon be felt in many fields of our daily life.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

Technical Cookies
In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services


Join our 12,000+ Professional community and get weekly AM industry insights straight to your inbox. Our editor-curated newsletter equips executives, engineers, and end-users with crucial updates, helping you stay ahead.